On Riesz Mean Inequalities for Subelliptic Laplacian
نویسندگان
چکیده
منابع مشابه
More inequalities for Laplacian indices by way of majorization
The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...
متن کاملSUBELLIPTIC POINCARÉ INEQUALITIES : THE CASE p < 1
We obtain (weighted) Poincaré type inequalities for vector fields satisfying the Hörmander condition for p < 1 under some assumptions on the subelliptic gradient of the function. Such inequalities hold on Boman domains associated with the underlying CarnotCarathéodory metric. In particular, they remain true for solutions to certain classes of subelliptic equations. Our results complement the ea...
متن کاملNordhaus-Gaddum Type Inequalities for Laplacian and Signless Laplacian Eigenvalues
Let G be a graph with n vertices. We denote the largest signless Laplacian eigenvalue of G by q1(G) and Laplacian eigenvalues of G by μ1(G) > · · · > μn−1(G) > μn(G) = 0. It is a conjecture on Laplacian spread of graphs that μ1(G)−μn−1(G) 6 n − 1 or equivalently μ1(G) + μ1(G) 6 2n − 1. We prove the conjecture for bipartite graphs. Also we show that for any bipartite graph G, μ1(G)μ1(G) 6 n(n − ...
متن کاملOn Certain Inequalities for Neuman-Sándor Mean
and Applied Analysis 3 (a, b), and let g(x) ̸ = 0 on (a, b). If f(x)/g(x) is increasing (decreasing) on (a, b), then so are f (x) − f (a) g (x) − g (a) , f (x) − f (b) g (x) − g (b) . (11) If f(x)/g(x) is strictly monotone, then the monotonicity in the conclusion is also strict. Lemma 6 (see [11, Lemma 1.1]). Suppose that the power series f(x) = ∑ ∞ n=0 a n x n and g(x) = ∑∞ n=0 b n x n hav...
متن کاملRiesz polarization inequalities in higher dimensions
We derive bounds and asymptotics for the maximum Riesz polarization quantity M n(A) := max x1,x2,... ,xn∈A min x∈A n ∑ j=1 1 |x− xj |p (which is n times the Chebyshev constant ) for quite general sets A ⊂ R with special focus on the unit sphere and unit ball. We combine elementary averaging arguments with potential theoretic tools to formulate and prove our results. We also give a discrete vers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics
سال: 2011
ISSN: 2152-7385,2152-7393
DOI: 10.4236/am.2011.26091